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1 Introduction 

Over the last decade, a number of Computational Imaging (CI) systems have been 
proposed for tasks such as motion deblurring, defocus deblurring and multispec-
tral imaging. These techniques increase the amount of light reaching the sensor via 
multiplexing and then undo the deleterious effects of multiplexing by appropriate 
reconstruction algorithms. However, a detailed analysis of CI has proven to be a 
challenging problem because performance depends equally on three components: 
(1) the optical multiplexing, (2) the noise characteristics of the sensor, and (3) the 
reconstruction algorithm, which typically uses signal priors. In this paper, we uti-
lize a recently proposed framework incorporating all three components [13]. We 
model signal priors using a Gaussian Mixture Model (GMM), which allows us to 
analytically compute Minimum Mean-Squared Error (MMSE). We analyze the 
specific problem of motion and defocus deblurring, showing how to find the opti-
mal exposure time and aperture setting for defocus and motion deblurring camer-
as, respectively. This framework gives us the machinery to answer an open ques-
tion in computational imaging: “To deblur or denoise?” 

1.1 Analysis of Computational Imaging Systems 

 
A number of camera designs have been proposed in recent years that capture 

different aspects of visual appearance using multiplexed measurements. Examples 
include defocus deblurring cameras [5,8,9,18], motion deblurring cameras [11,14], 
multi/hyperspectral multiplexing [7,16], and illumination multiplexing [15]. These 
systems use optical coding (multiplexing) to increase light throughput, which in-
creases the SNR of captured images. The desired signal is then recovered compu-
tationally via signal processing. The quality of recovered images depends jointly 
on the conditioning of the optical coding and the increased light throughput. 
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In this work, we follow a line of research whose goal is to relate maximum per-
formance to practical considerations (e.g. illumination conditions and sensor char-
acteristics). We follow the convention adopted by Cossairt et al. [3] and Mitra et 
al. [13]. We define a conventional camera as an impulse imaging system, which 
measures the desired signal directly (e.g. without blur). CI performance is then 
compared against the impulse imaging system. Noise is related to the lighting lev-
el, scene properties and sensor characteristics. In this paper, we analyse defocus 
and motion deblurring cameras. These cameras capture blurry images, and all-
focused images are then recovered computationally via deconvolution. We con-
sider a pillbox shaped blur function for defocus blur, and a 1-D rect function for 
motion blur. The impulse imaging counterpart for defocus blur is a narrow aper-
ture image. For motion blur, the impulse imaging counterpart is a short exposure 
image. CI techniques capture more light, but they require deconvolution, which 
amplifies noise. Impulse imaging doesn’t require deconvolution, but captures less 
light. There is a parameter for both motion (exposure time) and defocus deblurring 
(aperture size) that can be adjusted to trade-off light gathering power and decon-
volution noise. We address the problem of how to optimize this parameter to 
achieve the best possible performance with signal priors taken into account.   

In this paper we analyse the special case of uncoded defocus and motion blur 
that has not been optically manipulated in any way to improve invertibility. How-
ever, the framework used in this paper can also be used to analyse any multiplexed 
imaging system. For example, defocus deblurring systems have been devised to 
encode defocus blur using attenuation masks [9,18], refractive masks [5], or mo-
tion [8]. In addition, motion deblurring CI systems have been devised to encode 
motion blur using a fluttered shutter [14] or camera motion [11]. Further analysis 
of these systems can be found in [3,13]. The same optimization framework we use 
here can also be applied to these systems. 

1.1 The Importance of Signal Priors 

It is well understood that multiplexing gives the greatest advantage at low light 
levels (where signal-independent read noise dominates), but this advantage dimin-
ishes with increasing light (where signal-dependent photon noise dominates) [7]. 
However, it is impractical to study the effects of multiplexing alone, since signal 
priors are at the heart of every state-of-the-art reconstruction algorithm (e.g. 
BM3D [4], GMM [12,13]). Signal priors can dramatically increase performance in 
problems of deblurring (multiplexed sensing) and denoising (no multiplexing). 
However, it has historically been very difficult to determine exactly how much of 
an increase in performance to expect from signal priors, making it difficult to pro-
vide a fair comparison between different cameras.  

We characterize the performance of CI systems under a GMM prior which has 
two unique properties: Firstly, GMM satisfies the universal approximation proper-
ty which says that any probability density function can be approximated to any fi-
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delity using a GMM with an appropriate number of mixtures [13]. Secondly, a 
GMM prior lends itself to analytical tractability so that we can use MMSE as a 
metric to characterize the performance of both impulse and CI systems. 

2 Related Work 

Several recent works have analyzed the performance of multiplexed acquisition 
techniques, including the seminal work by Harwit and Sloan [7], as well as more 
recent techniques that incorporate signal-dependent noise into the analysis 
[1,6,15,17]. Recently, Cossairt et al. [3] have analyzed CI systems taking into con-
sideration the application (e.g. defocus deblurring or motion deblurring), lighting 
condition (e.g. moonlit night or sunny day), scene properties (e.g. albedo, object 
velocity) and sensor characteristics (size of pixels). However, all the above works, 
do not analyze the performance of CI systems when a signal prior is used for de-
multiplexing. A few recent papers have analyzed the fundamental performance 
limits of image denoising in the presence of image priors [2,10]. A similar ap-
proach was used by Mitra et al. [13] to extend this analysis to general framework 
for analyzing computational imaging systems. We have adopted this framework 
for analyzing motion and defocus deblurring cameras. We analyse only single im-
age CI techniques. Multi-image capture techniques have been analyzed by Has-
inoff et al. [6] (defocus deblurring), and Zhang et al. [17] (motion blurring). 
  

3 Imaging Model 

We use assume a linear imaging model that takes into account signal-dependent 
noise and models signals using a GMM prior. 

3.1 Image Formation Model 

We consider linear multiplexed imaging systems that can be represented as  
 

y = Hx + n ,   (1) 
 

where 𝒚 is the measurement vector, 𝒙 ∈ ℝ𝑵 is the unknown signal we want to 
capture, 𝐻 is the 𝑁×𝑁  multiplexing matrix and 𝒏 is the observation noise. In this 
paper, we analyze motion and defocus deblurring systems which produce shift-
invariant blur. For the case of 1D motion blur, the vectors 𝒙 and 𝒚 represent a 
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scanline in a sharp and blurred image patch, respectively. The multiplexing matrix 
𝐻 is a Toeplitz matrix where the rows contain the system point spread function. 
For the case of 2D defocus blur, the vectors 𝒙 and 𝒚 represent lexicographically 
reordered image patches, and the multiplexing matrix 𝐻 is block Toeplitz. 

3.1 Noise Model 

To enable tractable analysis, we use an affine noise model [1,6,15,17]. We model 
signal independent noise as a Gaussian random variable with variance 𝝈𝒓𝟐. Signal 
dependent photon noise is Poisson distributed with parameter 𝝀 equal to the 
number of photons collected at a pixel (𝑱). We approximate photon noise by a 
Gaussian distribution with mean and variance 𝝀. This is a good approximation 
when 𝝀 is greater than 𝟏𝟎. We also drop the pixel-wise dependence of photon 
noise and instead assume that the noise variance at every pixel is equal to the 
average signal intensity. We relate the number of photons collected by an impulse 
imaging system1 to scene and sensor characteristics using the equation [3,13]: 

J ≈1015 ⋅ (F / #)2 ⋅q ⋅R ⋅ t ⋅δ 2 ,   (2) 
 
Which depends on the scene illumination level 𝐼!"# (in lux), the average scene re-
flectivity (𝑅) and the camera parameters such as the f-number (𝐹/#), exposure 
time (𝑡), sensor quantum efficiency (𝑞), and pixel size (𝛿). For our experiments, 
we assume a reflectivity of 𝑅   =    .5, quantum efficiency 𝑞 = .5, aperture setting 
𝐹/20, exposure time 𝑡   =   1/50 secs, and pixel size 𝛿 = 5 microns.  
 

3.1 Signal Prior Model 

We learn GMM patch priors from a large collection of about 50 million train-
ing patches. For learning we use a variant of the Expectation Maximization ap-
proach to ascertain the model parameters. We also test that the learned model is an 
adequate approximation of the real image prior by performing rigorous statistical 
analysis and comparing performance of the learned prior with state of the art im-
age denoising methods [4].  For defocus deblurring, we learn a  GMM patch prior, 
of patch size 16×16, with 1770 Gaussian mixtures. For motion deblurring, we 
learn a GMM patch prior of patch size 4×256, with 1900 Gaussian mixtures. We 
                                                             

1 The increase in light collection for CI systems is encoded in the multiplexing 
matrix 𝐻. 
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use the analytic lower bound for MMSE derived in [13] to compute the optimal 
parameter setting for motion and defocus deblurring. 

4 Computational Imaging Examples 

The optimal parameters for motion deblurring (exposure time) and defocus 
deblurring (aperture setting) obviously depend on the scene light level. Hence, we 
compute the optimal parameters as a function of light level. 

4.1 Motion Deblurring Cameras 

We first set the exposure time of the impulse imaging systemso that the motion 
blur for the desired range of velocities is less than a pixel. We then analytically 
compute the expected increase in SNR for different exposure settings (PSF kernel 
lengths) with respect to the impulse imaging system (of PSF kernel length 1) at 
various light levels, see Fig. 1(a). For light levels less than 150 lux capturing the 
image with a longer exposure time and then deblurring is a better option, whereas 
for light levels greater than 150 lux we should capture the impulse image and then 
denoise. Fig. 1(b) shows the optimal blur PSF length at different light levels. At a 
light level of 1 lux, the optimal PSF length is 23 (corresponding to an exposure 
time of 460 milliseconds), whereas for light levels greater than or equal to 150 
lux the optimal length is 1, i.e., the impulse image setting. Figs. 1(c-e) show the 
simulated results with different PSF kernel lengths at a few lighting levels. 

4.2 Defocus Deblurring Cameras 

We first fix the aperture size of the impulse imaging system so that the defocus 
deblur is less than one pixel. We then analytically compute the increase in SNR 
for a larger aperture setting (and PSF kernel size) at various light levels (see Fig. 
2(a)), again computed with respect to impulse imaging. For light levels less than 
400 lux, capturing the image with a larger aperture and then deblurring is a better 
option, whereas for light levels greater than 400 lux, we should capture the im-
pulse image and then denoise. Fig. 1(b) shows the optimal blur PSF size at differ-
ent light levels. At a light level of 1 lux, the optimal PSF size is 9×9 (correspond-
ing to an aperture setting of 𝐹/2.2), whereas, for light levels greater than 400 lux 
the optimal size is 1×1, i.e., the impulse image setting. Figs. 1(c-d) show the sim-
ulated results with different PSF sizes and lighting levels. 
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Fig. 1. Optimal exposure setting for motion deblurring: In subplot (a) we analytically com-
pute the expected increase in SNR for different exposure settings (PSF kernel lengths), with re-
spect to the impulse imaging system (of PSF kernel length 1), at various light levels. The impulse 
imaging system has an exposure time of 20 milliseconds. Subplot (b) shows the optimal blur 
PSF length at different light levels. At light level of 1 lux, the optimal PSF size is 23 (corre-
sponding to an exposure time of 460 milliseconds), whereas for light levels greater than or equal 
to 150 lux the optimal size is 1, i.e. the impulse image setting. Subplots (c-e) show the simulated 
results with different PSF kernel lengths at a few different lighting levels. 
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Fig. 2. Optimal exposure setting for defocus deblurring: In subplot (a) we analytically com-
pute the increase in SNR for different aperture settings (PSF kernel size), with respect to the im-
pulse imaging system of PSF kernel size 1×1 (corresponding to an aperture setting of 𝐹/20), for 
various light levels. In subplot (b) we show the optimal blur PSF size at different light levels. At 
light level of 1 lux, the optimal PSF is 9×9 (corresponding to an aperture setting of 𝐹/2.2, 
whereas for light levels greater than 400 lux the optimal is 1×1, i.e. the impulse image setting. 
Subplots (c-d) show the simulated results with different PSF size at a few different lighting lev-
els. 
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5 Conclusion 

We have analysed the problem of parameter optimization for motion and defocus 
deblurring cameras, answering the question: “To deblur or denoise?”. We use a 
GMM signal prior and compute performance for both CI (deblurring) and impulse 
imaging (denoising) techniques. We relate performance to illumination and sensor 
characteristics. We showed that for a typical camera specification, denoising is 
preferrable when illumination is greater than 400 lux for motion deblurring, and 
150 lux for defocus deblurring. In addition, we optimized parameters (exposure 
time for motion blur, aperture size for defocus blur) for darker illumination.       
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